THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH1010H/I/J University Mathematics 2017-2018 Assignment 7

Due Date: 25 Apr 2018 (Wed)

1. Evaluate the following integrals.

(a)
$$
\int \frac{1}{x^2 \sqrt{x^2 - 1}} dx
$$

\n(b) $\int \frac{x^3 - 3x - 2}{x^2 + x} dx$
\n(c) $\int \frac{3x + 2}{x^3 - 1} dx$
\n(d) $\int \frac{6x + 11}{(x + 1)^2} dx$
\n2. (a) Prove that $\int_0^1 \frac{u^4(1 - u)^4}{1 + u^2} du = \frac{22}{7} - \pi$.

0 (b) Evaluate \int_1^1 0 $u^4(1-u)^4 du$ and hence show that

$$
\frac{22}{7}-\frac{1}{630} < \pi < \frac{22}{7}-\frac{1}{1260}.
$$

3. (a) Let $f(x)$ be an increasing function. Show that

$$
\sum_{i=1}^{n-1} f(i) \le \int_1^n f(x) \, dx \le \sum_{i=2}^n f(i)
$$

for $n = 2, 3, 4, \cdots$.

(b) Hence, prove that

$$
\ln[(n-1)!] \le \int_1^n \ln x \, dx \le \ln(n!)
$$

and that

$$
(n-1)! \le n^n e^{-n+1} \le n!.
$$

By using the result in (a) and that $\lim_{n\to\infty} n^{\frac{1}{n}} = 1$, evaluate $\lim_{n\to\infty}$ $(n!)^{\frac{1}{n}}$ $\frac{n}{n}$.

4. (a) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuously differentiable function (i.e. $f'(x)$ is continuous) and let $p \leq 1$. Prove that for all $x \in \mathbb{R}$,

$$
\int_0^x (x-t)^p f'(t) dt = -x^p f(0) + p \int_0^x f(t) (x-t)^{p-1} dt.
$$

(b) For any positive integer n and real number x , show that

$$
e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n-1}}{(n-1)!} + \frac{1}{(n-1)!} \int_{0}^{x} (x-t)^{n-1} e^{t} dt.
$$

Hence, show that

$$
\left| \left(e + \frac{1}{e} \right) - 2 \left(1 + \frac{1}{2!} + \frac{1}{4!} + \dots + \frac{1}{(2n)!} \right) \right| < \frac{3}{(2n)!}.
$$

- 5. Let $f : \mathbb{R} \to \mathbb{R}$ be a function with continuous second derivative (i.e. $f''(x)$ exists and it is continuous) and define $I = \int_0^1$ 0 $f(x) dx$.
	- (a) Show that

$$
I = f(0) + \int_0^1 (1 - x) f'(x) \, dx = f(1) - \int_0^1 x f'(x) \, dx.
$$

Hence, deduce that

$$
I = \frac{f(0) + f(1)}{2} - \frac{1}{2} \int_0^1 x(1-x) f''(x) \, dx.
$$

(b) Suppose that for all $x \in [0,1]$, there exists constants M and K such that

$$
|f'(x)| \le M \qquad \text{and} \qquad |f''(x)| \le K.
$$

Show that
$$
\left|I - \frac{f(0) + f(1)}{2}\right| \text{ is bounded above by } \min\{\frac{M}{4}, \frac{K}{12}\}.
$$

(Remark: What is the geometrical meaning of the quantity $\frac{f(0) + f(1)}{2}$?)

- 6. For any nonnegative integer *n*, define $I_n = \int_0^{\pi/2}$ 0 $\sin^{2n+1} x \, dx.$
	- (a) (i) Evaluate I_0 and express I_n in terms of I_{n-1} for any positive integer n. (ii) Show by mathematical induction that for $n = 0, 1, 2, \dots, I_n = \frac{(n!)^2 2^{2n}}{(2n+1)!}$ $\frac{(n!)^2}{(2n+1)!}.$
	- (b) For any nonnegative integer *n*, define $S_m = \sum_{n=1}^{m}$ $n=0$ $(n!)^2 2^{n+1}$ $\frac{(n!)^{2}}{(2n+1)!}$.
		- (i) Show that

$$
S_m = \int_0^{\pi/2} 2\sin x \frac{1 - \left(\frac{1}{2}\sin^2 x\right)^{m+1}}{1 - \frac{1}{2}\sin^2 x} dx.
$$

(ii) Deduce that

$$
\int_0^{\pi/2} \frac{2\sin x}{1 - \frac{1}{2}\sin^2 x} dx - \frac{\pi}{2^m} \le S_m \le \int_0^{\pi/2} \frac{2\sin x}{1 - \frac{1}{2}\sin^2 x} dx.
$$

at $\sum_{}^{\infty} \frac{(n!)^2 2^{n+1}}{1 - \frac{1}{2}\sin^2 x} = \pi$

Hence, show that $\sum_{n=1}^{\infty}$ $n=0$ $\frac{(n!)^2}{(2n+1)!} = \pi$

7. Let $I_n = \int_{0}^{\frac{\pi}{2}}$ $\mathbf{0}$ $\cos^n t \, dt$, where *n* is a nonnegative integer.

- (a) (i) Evaluate I_0 and I_1 .
	- (ii) Show that $I_{n+2} = \frac{n+1}{n+2}$ $\frac{n+1}{n+2}I_n$ for $n \geq 0$. Hence, evaluate I_{2m} and I_{2m+1} for $m \geq 1$.
- (b) Show that $I_{2m-1} \geq I_{2m} \geq I_{2m+1}$ for $m \geq 1$.
- (c) Let $A_n = \frac{1}{2n+1} \left[\frac{2 \cdot 4 \cdot 6 \cdots (2n)}{1 \cdot 3 \cdot 5 \cdots (2n-1)} \right]^2$, where *n* is a nonnegative integer.
	- (i) Using (a) and (b), prove that $\frac{2n+1}{2n}A_n \geq \frac{\pi}{2}$ $\frac{n}{2} \geq A_n$.
	- (ii) Show that $\{A_n\}$ is a monotonic increasing sequence.
	- (iii) Evaluate $\lim_{n \to \infty} \frac{1}{\sqrt{2n+1}} \left[\frac{2 \cdot 4 \cdot 6 \cdots (2n)}{1 \cdot 3 \cdot 5 \cdots (2n-1)} \right]$.